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 A. Introduc�on 

 A.i Our Project 
 For our ENPH 353 final project, our goal was to develop an autonomous agent to navigate the compe��on space 
 (Figure 1). Our robot drives through the environment, obeys traffic laws and reports license plates and 
 corresponding parking stalls. This compe��on takes place in a Gazebo simula�on. 

 Figure 1: Overhead view of the compe��on space. 

 A.ii Our Strategy 
 For the development of this project, there were two major areas of focus: driving control and license plate 

 detec�on and recogni�on. 
 Driving control could be broken down into comple�ng a lap of the outer and inner circles, detec�ng and 

 wai�ng for pedestrians and detec�ng and avoiding vehicle collision. We decided to use classical computer vision 
 (CV) and propor�onal integral deriva�ve (PID) control for line following for the outer and inner sec�ons of the 
 track. To detect pedestrians and vehicles, computer vision allowed us to recognize features around the stage to 
 determine if we reached crosswalks or intersec�ons with vehicles. Using background subtrac�on, we could detect 
 movement at these dangerous areas and control our agent accordingly. 

 For license plate detec�on we use a combina�on of classical CV techniques and a neural network for 
 character recogni�on. We use a color mask to determine when we are close enough to the car to recognize a 
 license plate. We then apply a Scale-Invariant Feature Transform (SIFT) followed by a perspec�ve transform to get 
 an clear, straightened image of the license plate. By using contour detec�on, we extracted the relevant text from 
 the plate and fed the image into our trained convolu�onal neural network (CNN) to generate a predic�on of the 
 individual characters on the plate. 

 These strategies, their ra�onale and implementa�on will be covered in more detail in the following 
 sec�ons. 

 B. Overall So�ware Architecture 
 B.i. So�ware Structure 
 Our compe��on was developed in a ROS environment. We are given access to a live camera feed from our agent, 
 the ability to publish linear and angular veloci�es to our agent, and also can publish license plates. On our end, we 
 naturally created two ROS packages, one for the control algorithm and one for the plate recogni�on so�ware. 
 Their respec�ve GitHub links are: 



 h�ps://github.com/Zephko/cnn-enph353 
 h�ps://github.com/Zephko/control-enph353 

 The overall structure of our code can be seen in Figure 2. We created two main nodes to run our agent, plate.py 
 and control.py. Here is a brief overview of what each Python file does: 

 -  plate.py: 
 ○  The ROS node for taking in image data, extrac�ng plate numbers, and publishing them to the score 

 tracker. 
 ○  Roughly tracks posi�on of car by detec�ng large varia�on in the amount of blue in frame 
 ○  Matches each parking stall to its respec�ve SIFT template 
 ○  Loads the saved NN model and generates predic�ons 

 -  train_char_recogni�on.py: 
 ○  A script wri�en to train a convolu�onal neural network to match images of license plate 

 characters to their respec�ve alphanumeric character representa�on 
 ○  Uses keras framework to set model parameters and train the model 
 ○  Can generate a new model or load an old model to con�nue training 
 ○  Generates plots of the accuracy and loss of both the training sets and the valida�on sets 

 -  augment_data.py and blur_data.py: 
 ○  created datasets of alphanumeric characters to train our convolu�onal neural network on 

 -  control.py: 
 ○  the main node that controls the agent 
 ○  takes in the live camera feed from the agent 
 ○  with each frame, it can line follow or make decisions about stopping for pedestrians and vehicles 

 Figure 2: Diagram of our so�ware structure. 

 C. Plate Recogni�on 

 C.i. Perspec�ve Transform 
 While driving near the cars, SIFT is ac�vated to track key points between saved templates images and the 

 current frame being published from the agent on the ROS network. These saved templates were obtained for each 
 parking stall individually to maximize the number of possible key points to match. Another method we considered 
 was to perform a turn to directly drive in front of the plate each �me. We avoided doing this because we would 
 need to break out of our PID algorithm and it would take significant amounts of �me to perform each turn. 

https://github.com/Zephko/cnn-enph353
https://github.com/Zephko/control-enph353


 Ul�mately, when we realized we could obtain a nice perspec�ve transform even at extreme angles to the plate, we 
 stuck with SIFT. 

 Figure 3: A visualiza�on of feature matching between a template (le�) and a frame from the simula�on (right). 

 Once enough matches were found between our template and a license plate, we were able to generate a 
 homography for the plate and perform a perspec�ve transform. This proved to be quite difficult as the 
 homography generated was not always perfect. 

 In Figure 4, you can see the types of transforms that could result from this method. The image on the right 
 side of Figure 4 is what occurs when the four corners of the template are found to be in four loca�ons in our video 
 feed that did not make sense. For example, if the top right corner of the plate as seen in the template is matched 
 to the bo�om le� of the plate in the video, then we will get a transform like the one on the right in Figure 4. To 
 prevent these poor transforms from passing on to the character recogni�on stage, we removed any bad 
 transforms by checking the rela�ve posi�on of the four corners generated from the homography and discarding 
 any that were incorrect. 

 Figure 4: An ideal perspec�ve transform result (le�), O�en occurring faulty transform (right). 

 C.ii. Text Extrac�on 
 To extract text from the plate, we used contour detec�on using OpenCV. Originally we had considered 

 simply slicing the image according to set coordinates but this proved to be extremely difficult since the perspec�ve 
 transform would o�en be skewed. By running the contour detec�on on a transformed image of a plate, we are 
 able to draw bounding rectangles for each contour even if the plate is not perfectly aligned. To get only the 



 relevant contours we filtered the contours by size, taking only le�ers and numbers and avoiding the Bri�sh 
 Columbia flag and the larger contours around the whole image. 

 We also ran into issues with nested contours. Par�cularly in characters which have closed loops like the ‘P’ 
 and the ‘6’ in Figure 5. To avoid feeding these contours into the neural network, we leveraged OpenCVs ability to 
 return a hierarchical structure of contours. By examining the parent/child rela�ons between different contours, we 
 could discard the nested contours and only keep the six relevant characters from each car. 

 Figure 5: Contour detec�on on perspec�ve transformed plate with nested contours to be removed. 

 C.iii. Neural Network (NN) Architecture 
 Since we are working with image classifica�on, we chose to use a convolu�onal neural network. As inputs 

 to our neural network we generated images of le�ers (see detail in C.iv) and matched each of those images to a 
 one-hot encoding format. We went with a fairly common architecture that is commonly used for categorical 
 classifica�on methods. We alternate between applying a convolu�on with ReLU ac�va�on and a max pooling layer. 
 The convolu�on filters are used to extract high level features from the input image while the 2x2 max pooling 
 layers downsample the data and extract only the dominant features in each 2x2 area.  A�er several repeats, we 
 then fla�en the data into a 1D structure and have a dropout layer with a 0.5 probability to avoid overfi�ng the 
 data. Then the data gets fed through a ReLu ac�va�on layer which provides the input to the So�max layer to 
 classify each input. The resul�ng output is an array of size 36, each entry represen�ng the probability that the 
 image matches to its own corresponding alphanumeric character. 
 The full structure is as follows: 

 ●  32 filter Convolu�onal Layer 
 ●  2x2 Max Pooling 
 ●  64 filter Convolu�on Layer 
 ●  128 filter Convolu�on Layer 
 ●  2x2 Max Pooling 
 ●  128 filter Convolu�on Layer 
 ●  2x2 Max Pooling 
 ●  Fla�en 
 ●  Dropout with 0.5 Probability 
 ●  Dense ReLu Ac�va�on Layer 
 ●  So�max Layer 



 C.iv. Training and Valida�on Tes�ng and Performance 
 To generate data to train our neural network, we wrote a script that used the license plate generator from 

 Lab 5 to generate approximately random license plates, clip each alphanumeric character and labelled its file name 
 correspondingly. On our first itera�on of training the neural network, with approximately 200 samples for each 
 le�er, the neural network was able to perform very well on its own training and valida�on sets. We were able to 
 generate the following plots, converging on a valida�on accuracy of 0.995 and a valida�on loss of 0.0330. This 
 sta�s�cs, however, are not quite indica�ve of the performance of this neural network when running in simula�on. 

 Figure 6: The model loss (le�) and model accuracy (right) plots 
 for our first itera�on of training for character classifica�on. 

 By analyzing this ini�al loss plot, it appears we do have a high amount of bias. This could help to explain 
 why when we tested with images of characters from the simulated environment instead of from the cleaner 
 license plate generator, this trained neural network did not transfer very well immediately. It is important to 
 remember that the valida�on data was taken from the same original dataset as the training data so the varia�on 
 between the training and valida�on sets is minimal. 

 The solu�on was to add more varia�on into the dataset. Looking at the actual plates in the simula�on, we 
 saw that the characters were more blurry, darker and out of perspec�ve. To make our data resemble the actual 
 plates, we used a data augmenter from Keras, as well as a Gaussian blur procedure from skimage. We created 
 approximately 400 blurred, rotated, shi�ed and darkened characters to train from. During the second itera�on, 
 with the 400 new augmented images per character, we con�nued to train the same neural network with the new 
 data. The second itera�on of training yielded the following plots. 



 Figure 7: The model loss (le�) and model accuracy (right) plots for our second itera�on of training star�ng 
 from the ini�al trained network. 

 Though the plots s�ll seem to indicate high bias, the overall accuracy of the neural network improved. 
 Since our training data is so similar to the images from the simula�on, training for high bias rather than high 
 variance seems like a good tradeoff in this compe��on. However, in the real world such a neural network would 
 suffer greatly due to the low variance because license plates could vary greatly in size, colour, and shape. When 
 tested on difficult images taken from the simula�on this neural network performed excellently, guessing nearly 
 everything correctly. It o�en helped to test our trained model and generate a confusion matrix like below to 
 visualize how the neural network classifies the images and where we might need to make improvements. Looking 
 back, our confusion matrix almost always gave us 100% accuracy because we took our valida�on sets from the 
 augmented data we generated. To get a more accurate representa�on of performance, it would have been useful 
 to generate valida�on data from the simula�on itself as we drive through the world. 

 Figure 8: A confusion matrix that shows 100% accuracy of our neural network on a given data set. 

 The occasional error occurred on difficult to dis�nguish le�ers like ‘C’ and ‘G’ or ‘O’ and ‘Q’. We a�empted 
 to resolve these small errors by genera�ng a new data set with many more samples of the troublesome le�ers. 
 The performance when running our simula�on did not seem to improve so we ul�mately went with the neural 
 network described above. 

 D. Robot Driving Control 

 D.i General Driving Control 
 The structure of our control algorithm is built as a state machine. Input from the camera on our agent as 

 well as informa�on published by our plate recogni�on node allowed us to switch states and control our robot. The 
 actual control of our robot relied mainly on PID control, with some hard coded turns at key loca�ons. 

 At the start of our development process, we considered imita�on learning and reinforcement Q-learning 
 for robot control. However, we decided early on that we did not have sufficient �me before the deadline to 
 reliably implement those strategies. 



 D.ii Outer Driving Control 
 At the start of our run, we have a hard coded le� turn.  We then start our general line following algorithm. 

 Each frame passed in by the onboard camera is first grey scaled then passed through a high threshold. This gives 
 us an image that only has the high intensity white lines. We also perform the CV processes erosion and dila�on 
 which remove noise from the frame. By itera�ng from the right of the frame to the le� and stopping when we hit a 
 white pixel, we are able to detect where the right line is rela�ve to our agent, and allows us to adjust accordingly 
 (right-side line following). We can also iterate from the le� to right to detect where the le� line is rela�ve to our 
 agent (le�-side line following). These will both be used in our control algorithm. 

 For the outer loop, we used right-side line following. This following can be interrupted in three ways: 
 reaching a crosswalk, reaching a parking stall or finding all the parking stalls in the outer loop. 

 D.iii Pedestrian Detec�on 
 On each frame, we apply a mask on the RGB frames to detect the characteris�c bright red of the crosswalk 

 markers. We then scan a specific region of this frame. If we detect the presence of this crosswalk red in this region, 
 our agent will stop. The region is chosen so that our agent will stop exactly before the crosswalk. We then enter 
 into a different state where we scan for the pedestrian. We do this with background subtrac�on. By subtrac�ng 
 adjacent frames from each other, we can detect differences between these frames, which corresponds to 
 movement. Our agent waits for a certain amount of frames that has no movement, drives straight then con�nues 
 to right-side line follow. Images of the pedestrian detec�on logic can be seen below. 

 Figure 9.a. (Le�): Presence of a crosswalk a�er applying a mask to the RBG frame. 
 Figure 9.b. (Right): Presence of a moving pedestrian a�er applying background subtrac�on at a crosswalk. 

 D.iv. Stopping for Plates 
 Our line following algorithms were also interrupted when we neared parking stalls. Our plate recogni�on 

 node reports plates more accurately when frames are captured from a sta�onary agent. Our plate recogni�on 
 node publishes a boolean value when we near a parking stall. In our control node, we simply stop for a few 
 seconds then con�nue line following. Furthermore, we also had the ability to stop for longer at certain parking 
 stalls that we found to con�nually give us problems, such as stall 4 and 6. 

 The parking stalls for the middle circle are deeper into the grass compared to the outer plates. Thus, we 
 also perform a slight pivot towards the plate when we are in the center loop and receive this message. 

 D.v. Ge�ng to the Middle 
 The plate recogni�on node also publishes when we have reached all six outer plates. At this point, we 

 switch states and a�empt to enter the inner circle of the map. A�er switching states, we also switch to our le�-line 
 following algorithm. While we le� follow, we again passed our grey-scaled camera frame through a threshold. The 



 purpose of this threshold is to differen�ate the colour of the sky from the dark coloured trees and surrounding 
 walls. As seen in Figure 10, on the approach to the inner circle, the top (approximately 100 pixels) of our 
 thresholded view is always obstructed by trees or by the wall. As we con�nue line following, however, we 
 eventually pass the trees and have a clear view of the sky in the top of our frame. At this point, we then stop our 
 vehicle, pivot slightly to the right, and switch states into vehicle detec�on. 

 Figure 10: The sky-thresholded view of the agent as it approaches the intersec�on (from le� to right). 
 Note that the top of the fourth image is unobstructed by walls or trees. 

 D.vi. Vehicle Detec�on 
 Through the development of our PID, we realized that we line follow slower than the truck moves. Thus, if 

 we were to enter the circle at a random �me, we were likely to eventually get rear ended. Thus, only when the 
 truck passes us, then we can enter the inner ring. 

 To do this, we perform a background subtrac�on procedure again, similar to the one that we used for 
 pedestrian detec�on which is shown in Figure 11. Since we are pivoted to the right, if we see movement, then the 
 car is near us and we wait. If we do not detect any vehicle movement for a certain number of frames (12), then we 
 can enter the inner ring with our hard coded linear drive then le� pivot. 

 Figure 11: This is the output of the background subtrac�on procedure as the 
 vehicle rounds the corner and passes in front of our agent. 

 D.vii. PID in the Inner Ring 
 The PID control for the inner ring was difficult, since there was no consistent boundary to follow. The le� 

 line had breaks where there were intersec�ons, and the right side had breaks where there were parking stalls. To 
 solve this issue, we decided to try using right-side line following by trea�ng the le� boundary of the parking stall 
 closest to the road into con�nua�ons of the road lines. 

 To get the boundaries of the parking stall, we applied a mask to the blue colour of the parking stall. This 
 worked quite well, and the summa�on of the lines and the side of the parking stall can be seen in Figure 12.a. 
 However, a recurring problem that we had with the inner circle was that the parking stall shapes were too far to 
 the right rela�ve to the line. Thus, in tes�ng, when we a�empted to follow the line produced by Figure 12.a., we 
 would always sharply turn and crash into the parking stall. 



 To solve this issue, we simply shi�ed the mask of the parking stall 150 pixels to the le�. This result can be 
 seen in Figure 12.b. Although the stall and line may not look con�nuous, this is an issue with how the frames look 
 distorted from far away, but line up as you get closer. Shi�ing the frame made our line following much be�er. This 
 itera�on of our inner circle following had results comparable to our outside line driving. 

 Figure 12: The le� image (a) is the view before shi�ing, and the right view (b) is a�er shi�ing. 

 E. Summary 

 E.i Overall Performance and Compe��on 
 Throughout the days leading up to compe��on, we were able to set expecta�ons for our robot. We have seen it 
 achieve a perfect score in 220 seconds, but usually will score somewhere in the 40s. Our compe��on score was 
 51! We are very happy with our performance and to see our hard work pay off! 

 E.ii. Reflec�on 
 Although we did not have the �me in this project, looking into imita�on learning or reinforcement learning 

 for driving control would be very interes�ng. In the compe��on, we saw how well the groups that implemented 
 these performed. On the same note, finding ways to limit the amount of processing per frame would help our PID 
 control. 

 Line following was difficult to get working and even more difficult to get our agent to go faster. The result 
 of this can be seen in the development of our agent. For example, to not get rear ended by the inner vehicle, we 
 have to wait for the inner vehicle to drive by us. We can also see in the results later that we were the slowest 
 agent in comparison to similar scoring teams. Line following was a difficult task due to the amount of processing 
 we were doing on each frame. On each frame, our code had to check various boolean values to determine state, 



 and also perform many CV transforma�ons. Each frame was at least transformed five �mes and also had to be 
 scanned for the posi�on of the lines for following and for the presence of crosswalks. As a result, we received 
 frames very slowly and our agent had to PID control with a very low frequency of data. 

 Finally, the real �me factor (RTF) of the simula�on and related performance of our computers caused a lot 
 of problems through our development of our robot and PID control. We first no�ced these problems when we ran 
 this code on different computers. The laptop that the PID code was mainly wri�en on had good performance, 
 while the agent almost couldn’t follow on the other laptop. Furthermore, even on the same laptop, the varying 
 real �me factor caused many problems for our PID control including wai�ng for pedestrians or vehicles. 
 Furthermore, the laptop that we were running the simula�on on with Zoom screen share resulted in a real �me 
 factor of approximately 0.45. As a result, tes�ng full runs took about 10 minutes and it was very hard to make 
 small adjustments and test the agent in the days leading up to compe��on. 

 Despite being able to accurately predict most license plates, the speed of our method was not op�mal. 
 The reason for this is likely because SIFT is a compute heavy process. By elimina�ng SIFT in favour of finding the 
 corner points of the license plate by applying a mask, we may have been able to generate more predic�ons for the 
 characters on the plate and chosen the predic�on with the highest probability for a certain character. 

 Overall, this project and course has been a very valuable learning experience that allowed us to explore 
 computer vision, neural networks, reinforcement learning. By experimen�ng with these techniques we gained a 
 much stronger understanding of how to develop solu�ons to problems in autonomy. We discovered how factors 
 such as noise and the compute speed of our so�ware can greatly affect our ability to implement an autonomous 
 agent and how we can mi�gate any resul�ng errors. 


